Modified alginate matrices for the immobilization of bioactive agents.

نویسندگان

  • Canh Le-Tien
  • Mathieu Millette
  • Monique Lacroix
  • Mircea-Alexandru Mateescu
چکیده

Bioactive agents (catalase - an enzyme, and nisin - a bacteriocin) were covalently immobilized on alginate activated with sodium periodate (oxidatively converting 2,3-dihydroxy groups into dialdehyde residues), followed or preceded by ionotropic gelation. For the same protein coupling yield, the retained enzyme activity of the immobilized enzyme (ImE) can be markedly increased by diminishing the bead diameter, a phenomenon that illustrates the role of substrate/product diffusion through the bead gel layer. When the amount of enzyme introduced for coupling was about 15 mg/100 mg of support and the bead diameter was about 100 microm, a high retained specific activity (95-98%) was obtained. Diffusion phenomena can be markedly decreased by enzyme immobilization on the surface of microbeads (obtained by gelation of activated alginate prior to immobilization). In this case, the retained activity was approx. 75% of that of the free enzyme. A slightly higher K (m) value of ImE suggested that the enzyme-substrate affinity was almost maintained. The profiles of ImE activities at various pH values, at various temperatures and when undergoing proteolysis showed a overall higher stability for the immbolized than that for the free enzyme. Nisin immobilized on the microbead surface, when submitted to proteolysis, conserved its bacteriocin activity, strongly inhibiting the growth of Lactobacillus sake when subjected to an agar spot test, whereas free nisin totally lost its activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gum Tragacanth Gels as a New Supporting Matrix for Immobilization of Whole-Cell

We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems.  The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicill...

متن کامل

Addition of Fillers to Sodium Alginate Solution Improves Stability and Immobilization Capacity of the Resulting Calcium Alginate Beads

Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limit...

متن کامل

Gum Tragacanth Gels as a New Supporting Matrix for Immobilization of Whole-Cell

We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G ...

متن کامل

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

متن کامل

Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein

An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and applied biochemistry

دوره 39 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004